Clime Connections

Version 5.1

Fall, 1992

/

After a couple of examples, the other students
caught on. The teacher then goes on to help the
students develop the rest of the program. A de-
scription follows.

The Make “days 10

discovered make “wagesl (:days - 1) * 2 + 50
formula print :wagesl

stated in

"Logoese.

The computer prints 68 confirming Steve’s
previous calculation. If we want to find out
how much one gets on the last day (22), we

formula is applied and wages1 becomes
$2100. (This appears to be an impressive
amount.)

payment plan. The formula should deliver 1¢

on any given day.

The value of

wages2 gets Make “days 5

::gt:hpilswd b2 | make “wages2 .01

the new value:fs repeat 4 [make “wages2 :wages2 *
wages2. This 2]

gets repented 4

times. The value | S0 On the fifth day, you would earn
gﬂu:gﬁ zgl;rh $.16. We also need a formula to see
becomes 02, 04, | What our total earnings are for the
.1172, and finally | month. For plan #1:

make “total.wages.planl 0

make “wages.planl (:days-1)*2+50

make “total.wages.planl :total.wages.planl
+ :wages.planl

The new total.wages.planl is the old
total (0) plus day1’s earnings (50) which now
equals 50. The same is done with plan #2. The
initial total is set to 0.

make “total.wages.plan2 0

B

change the first line to make “days 22.The

A similar formula can be written for the second

for the first day and will indicate what is earned

:)

' On day 1 wages.plan2 issetto 1.

if :day = 1 [make “wages.plan2 1]

- On subsequent days the repeat formula is used
i to determine the wages for a given day.
| if :days > 1 [repeat (:days - 1)

[make “wages.plan2 :wages.plan2 * 2]]

The new total.wages.planl is the old total
(0) plus day one’s earnings (.01) which now
equals .01.

make “total.wages.plan2 :total.wages.plan2 +
:wages.plan2

the results of the day’s transaction are printed
out for all to see.

pr (se :wages.planl :wages.plan2
stotal.wages.planl :total.wages.plan2)

These instructions are next put inside a proce-
dure with a recursive call so the calculations
can be performed for a given number of days.

to loop :count :days

if (:count > :days) [stop]

make “wages.planl (:count - 1) * 2 + 50
make “total.wages.planl :total.wages.planl +
twages.planl

if :count = 1 [make “wages.plan2 .01]

if :count > 1 [make “wages.plan2 :wages.plan2
* 2]

make “total .wages.plan2 :total.wages.plan2 +
twages.plan2

(pr :count :wages.planl :wages.plan2
:total.wages.planl :total.wages.plan2
(:total.wages.planl - :total.wages.plan2))
loop :count + 1 :days

end

Finally, a superprocedure report is written to
initialize variables and limit the number of inputs
to just one. The procedure becomes this:

Continued on next page

Page 8

